電子政府推奨暗号回路 および制御ソフトウェア 解説書

第 0.1 版

2010年2月23日

目次

1. 7	概要		.4
1.1	l SA	SEBO-GII-AES暗号FPGAボード	.4
1.2	2 制征	御ソフトウェア	.5
2.	ロース	1ルバス仕様	.6
2.1	L 信	号名と機能	.6
2.2	2 バ	スの動作	.7
2.3	3 □.	ーカルバス・タイミング	.8
3.	FPGA	1 内部構成	.9
4.	ブロッ	・ク暗号 AES	10
4.1	レフ	アイル構成	10
4.2	2 FP	GA1_AESモジュール構成	11
4.3	3 暗	号回路入出力信号	13
4.4	4 ア	ドレスマップ	14
4.8	5 レン	ジスタ	16
	4.5.1	コントロール・レジスタ	16
	4.5.2	ENC/DECレジスタ	16
	4.5.3	AESモード・レジスタ	17
	4.5.4	鍵幅レジスタ	17
	4.5.4	鍵入力レジスタ 1-8	18
	4.5.5	イニシャルベクター入力レジスタ 1-8	18
	4.5.6	データ入力レジスタ 1-8	18
	4.5.7	データ出力レジスタ 1-8	19
	4.5.8	FPGA1 バージョン・レジスタ	19
4.6	3 動	作手順	19
	4.6.1	ECBモード Encrypt	19
	4.6.2	ECBモード Decrypt	20
	4.6.3	CBCモード Encrypt	21
	4.6.4	CBCモード Decrypt	21
	4.6.5	CFBモード Encrypt	22
	4.6.6	CFBモード Decrypt	23
	4.6.7	OFBモード Encrypt	23
	4.6.8	OFBモード Decrypt	24

4.6.9 $CTR \neq - \nvDash$ Encrypt	25
4.6.4 CTRモード Decrypt	25
5. ブロック暗号 CMAC	
5.1 ファイル構成	
5.2 FPGA1_CMACモジュール構成	
5.3 CMAC モジュール入出力信号	29
5.4 アドレスマップ	
5.5 レジスタ	31
5.5.1 コントロール・レジスタ	31
5.5.2 鍵幅レジスタ	32
5.5.3 レングス入力レジスタ 1, 2	32
5.5.4 鍵入力レジスタ 1-8	32
5.5.5 イニシャルベクター入力レジスタ 1-8	33
5.5.6 データ入力レジスタ 1-8	33
5.5.7 データ出力レジスタ 1-8	33
5.5.8 FPGA1 バージョン・レジスタ	34
5.6 動作手順	34
6. ストリーム暗号MUGI	35
6.1 ファイル構成	35
6.2 FPGA1_MUGIモジュール構成	36
6.3 MUGI モジュール入出力信号	36
6.4 アドレスマップ	37
6.5 レジスタ	39
6.5.1 コントロール・レジスタ	39
6.5.2 鍵入力レジスタ 1-8	39
6.5.3 イニシャルベクター入力レジスタ 1-8	39
6.5. 4 データ出力レジスタ 1-8	40
6.5.5 FPGA1 バージョン・レジスタ	40
6.6 動作手順	40
7. HMAC	41
7.1 ファイル構成	41
7.2 FPGA1_SHA256 モジュール構成	41
7.3 FPGA1_SHA256 入出力信号	
7.4 アドレスマップ	43
7.5 レジスタ	
7.5.1 コントロール・レジスタ	

7.	5.2 データ入力レジスタ 1, 2	44
7.	5.3 データ出力レジスタ 1-16	44
7.	5.4 FPGA1 バージョン・レジスタ	45
7.6	動作手順	45
8.制	御サンプルソフトウェア	46
8.1	プロジェクトの構成ファイル	46
8.2	プログラムの構造	46
8.3	スクリプトファイル	47
8.4	AES	48
8.5	CMAC	50
8.6	MUGI	51
8.7	HMAC	51

1. 概要

電子政府推奨暗号回路および制御ソフトウェア解説書(以下、本解説書)は、FPGA ボードに実装した電子政府推奨暗号回路(以下、暗号回路)と FPGA ボード上の USB イン ターフェースを通して暗号回路を制御するソフトウェアについて解説したものである。

電子政府推奨暗号回路は、平成 20 年度に開発した Virtex-5 FPGA ボードの SASEBO-G II-AES 暗号 FPGA ボード上に実装する。実装する暗号回路は、ブロック暗号 2 種類、ストリーム暗号、ハッシュ関数それぞれ 1 種類ずつの計 4 種類である。以下に、実装する暗号回路を示す。

ブロック暗号:AES

- ブロック暗号: CMAC
- ③ ストリーム暗号: MUGI
- ④ ハッシュ関数: SHA-256 による HMAC

これらの暗号回路は、独立した回路で同時に使用することはできず、変更するためには、 FPGA を書き換える必要がある。

制御ソフトウェアに関しても、暗号回路の種類ごとに4種類ある。

1.1 SASEBO-G I-AES暗号FPGAボード

SASEBO-GII-AES 暗号 FPGA ボードは、2 個の FPGA と 1 個の USB ターゲットコン トローラが実装されている FPGA ボードである。FPGA は、FPGA1 と FPGA2 の 2 個が 実装されているが、暗号回路自体は FPGA1 に実装される。FPGA2 は、USB コントローラ と FPGA1 とのインターフェースを行う回路が実装され、すべての暗号回路で共通で使用す る。図 1 に FPGA2 と FPGA1 および USB コントローラ間の接続を示す。

図1 FPGA2と FPGA1、USB コントローラの接続

USB コントローラは、マイクロチップ社の FT2232D を使用し、USB コントローラと FPGA2 は、FT2232D のを FIFO モードと呼ばれるモードで接続する。FT2232D の詳細に ついては、データシートを参照のこと。

FPGA2 と **FPGA1** は、専用のローカルバスを規定して接続する。**SASEBO-G** II ボードの 詳細については、**SASEBO-G** II - **AES** 暗号 **FPGA** ボード仕様書を参照のこと。

1.2 制御ソフトウェア

制御ソフトウェアは、Windows PC から、USB インターフェースを通して、暗号回路を 制御するためのサンプルプログラム集である。プログラムは、C#言語で記述され開発ツー ルは、Microsoft Visual C# 2008 Express Edition を使用している。

サンプルプログラムは、以下の4種類である。

- \cdot SASEBO_AES_sample
- \cdot SASEBO_CMAC_sample
- SASEBO_MUGI_sample
- \cdot SASEBO_SHA256_sample

2. ローカルバス仕様

FPGA1 と **FPGA2** は、専用のローカルバスにてインターフェースを行う。**FPGA2** が常 にバスマスタで **FPGA1** からローカルバスのアクセスを行うことはない。

2.1 信号名と機能

ローカルバスは、すべて単方向の信号線である。の表 1 にローカルバスの信号名と機能 を示す。表 1 に示した以外にも FPGA1 と FPGA2 の間には接続されている信号線は存在す るが、今回の仕様では使用していない。

信号名	信号方向	アクティブ	機能
lbus_rstn	$FPGA2 \rightarrow FPGA1$	Low	ローカルバス・リセット。ハードウェ
			アリセット入力で、この信号が'0'のと
			きに FPGA1 がリセットされる。
lbus_clk	FPGA2→FPGA1	Rise	ローカルバス・クロック。ローカルバ
			スの同期クロックでローカルバスの
			すべての信号はこのクロックの立ち
			上りエッジに同期して動作する。ま
			た、このクロックは、FPGA1 内のシ
			ステムクロックとしても使用される。
lbus_wd[7:0]	$FPGA2 \rightarrow FPGA1$	—	ローカルバス・ライトデータ。FPGA1
			にデータを書き込むためのデータ線
			である。
lbus_we	FPGA2→FPGA1	High	ローカルバス・ライト。
			"lbus_wd[7:0]"上のデータを FPGA1
			内に書き込むためのストローブ信号
			である。
lbus_ful	FPGA2←FPGA1	High	ローカルバス・フル。FPGA1 内にあ
			る書き込み用 FIFO がいっぱいであ
			ることを示す。この信号が'1'のとき
			は、ローカルバスに書き込みを行って
			もデータの書き込みは行われない。
lbus_aful	$\rm FPGA2{\leftarrow} \rm FPGA1$	High	ローカルバス・オールモストフル。
			FPGA1 内の書き込み用 FIFO があと
			1回の書き込みでいっぱいになること

表1 ローカルバス信号と機能

			を示す。この信号が'1'の状態で書き込
			みを行うと" lbus_ful"が'1'になる。
lbus_rd[7:0]	FPGA2←FPGA1	—	ローカルバス・リードデータ。FPGA1
			内部の読み出し用 FIFO からデータ
			を読み出すためのデータ線である。
lbus_re	FPGA2→FPGA1	High	ローカルバス・リード。FPGA1 内の
			読み出し用 FIFO からデータを読み
			出すためのストローブ信号である。
lbus_emp	FPGA2←FPGA1	High	ローカルバス・エンプティ。FPGA1
			内にある読み出し用 FIFO に読み出
			すデータがないことを示す。
lbus_aemp	FPGA2←FPGA1	High	ローカルバス・オールモストエンプテ
			ィ。FPGA1内にある読み出し用 FIFO
			に読み出すデータが 2 個以下である
			ことを示す。
lbus_busy	FPGA2←FPGA1	High	ローカルバス・ビジー _。 ローカルバス
			が使用中で、書き込み、読み出し動作
			が出来ないことを示す。

2.2 バスの動作

ローカルバスは、同期型バスで16ビットのアドレス空間を持ち1回のアクセスで16ビ ットデータの読み書きが可能である。ローカルバスのバス幅は、8ビットであるため1回の アクセスに5サイクルを要する。表2にFPGA2から見た読み出しサイクル、表3にFPGA2 からみた書き込みサイクルの詳細を示す。

表2 読み出しサイクル

バスサイクル	バス情報	信号方向
サイクル 1	読み出しコマンド出力	$FPGA2 \rightarrow FPGA1$
サイクル 2	上位アドレス出力	$FPGA2 \rightarrow FPGA1$
サイクル 3	下位アドレス出力	$FPGA2 \rightarrow FPGA1$
サイクル 4	上位データ入力	$FPGA2 \leftarrow FPGA1$
サイクル5	下位データ入力	$FPGA2 \leftarrow FPGA1$

表3 書き込みサイクル

バスサイクル	バス情報	信号方向
サイクル 1	読み出しコマンド出力	$FPGA2 \rightarrow FPGA1$
サイクル 2	上位アドレス出力	$FPGA2 \rightarrow FPGA1$
サイクル 3	下位アドレス出力	$FPGA2 \rightarrow FPGA1$
サイクル 4	上位データ入力	$FPGA2 \rightarrow FPGA1$
サイクル5	下位データ入力	$FPGA2 \rightarrow FPGA1$

読み出しと書き込みは、1 サイクル目に出力するコマンドにより決定する。各コマンドコードは、表4の通りである。

表4 コマンドコード

コマンド名	コード
ローカルバス・リード	0x00
ローカルバス・ライト	0x01

2.3 ローカルバス・タイミング

FPGA2 からの各ローカルバス信号は、"lbus_clk"に同期して出力される。図 2 に書き込みタイミング、図 3 に読み出しタイミングを示す。

図2 ローカルバス 書き込みタイミング

図3 ローカルバス 読み出しタイミング

3. FPGA1 内部構成

実際に暗号回路が実装される FPGA1 は、各暗号回路により対応した部分とローカルバス・インターフェース回路からなる。暗号回路は、搭載する暗号種類により異なるが、ローカルバス・インターフェース回路は、一部を除いて暗号回路が代わっても共通で使用できる。図4に FPGA1の概略ブロック図を示す。

図 4 FPGA1 概略ブロック図

4. ブロック暗号 AES

AES 暗号回路は、NIST Special Publication 800-38A の仕様書に則った AES モードに対応する暗号回路である。共通鍵は、128 ビット、192 ビットおよび 256 ビットのすべてを サポートし、AES 暗号回路は、以下の5 種類をサポートする。

- ・ECB (Electronic Codebook) モード
- ・CBC (Cipher Block Chaining) モード
- ・CFB (Cipher Feedback) モード
- ・OFB (Output Feedback) モード
- ・CTR (Counter) モード

4.1 ファイル構成

FPGA1_AESを構成するファイルを表5に示す。

ファイル名	種類	内容
FPGA1_AES_MULTI.v	Verilog-HDL	FPGA1_AES の最上位となる
		HDL ファイル
syncfifo_8x2047.v	Verilog-HDL	8ビット幅で深さが2047ワードの
		同期型 FIFO を記述した HDL フ
		アイル
ctrl_lbus.v	Verilog-HDL	FPGA2 とのローカルバス・インタ
		ーフェースを記述した HDL ファ
		イル
lbus_if.v	Verilog-HDL	暗号モジュールの制御を記述した
		HDL ファイル
AES_MULTI.v	Verilog-HDL	AES 暗号モジュールのトップ
		HDL ファイル
AES_MULTI_CORE.v	Verilog-HDL	AES 暗号回路の本体を記述した
		HDL ファイル
FPGA1_AES_MULTI_TB1.v	Verilog-HDL	シミュレーション・ファイル
AES_MULTI_TB1.v	Verilog-HDL	AES モジュールをシミュレーシ
		ョン・ファイル
pin_sasebo_gii_lx50.ucf	構成設定	FPGA1_AES の構成を規定したフ
		アイル

表5 FPGA1_AES ファイル構成

4.2 FPGA1_AESモジュール構成

FPGA1_AES の各モジュールは、以下のような構成で接続される。

図 5 FPGA1_AES モジュール構成

4.3 暗号回路入出力信号

表6に暗号回路の入出力信号を示す。これらの信号は、"lbus_if"モジュールに接続され制 御される。

信号名	方向	アクティブ	機能
RSTn	In	Low	リセット入力。 AES モジュールのすべての回
			路が初期化される。
CLK	In	Rise	システムクロック入力。AES モジュールは、
			CLK の立ち上りエッジに同期して動作する。
EN	In	High	動作イネーブル信号。"EN"を'1'にすることによ
			り AES モジュールが動作可能となる。
Busy	Out	High	"Busy"が'1'のとき AES モジュールが動作中で
			あることを示めす。
EncDec	In	High/Low	暗号化と復号化の切り替えを行う。'0'のときに
			暗号化。'1'のときに復号化となる。
Kwidth[1:0]	In	—	使用する鍵のビット幅を指定する。'0'のときに
			128 ビット鍵、'1'で 192 ビット鍵、'2'で 256 ビ
			ット鍵となる。
AESmode[2:0]	In	—	AES のモードを指定する。'0'で ECB モード、'1'
			のときに CBC モード、'2'で CFB モード、'3'
			で OFB モード、'4'で CTR モードとなる。
Kin[127:0]	In	—	鍵入力
Din[127:0]	In	—	平文または暗号文入力。EncDec が'0'のときは
			平文、'1'のときは暗号文入力となる。
Iin[127:0]	In	_	イニシャルベクター入力
Cin[127:0]	In	—	カウンタ入力
Krdy	In	High	鍵入力が完了し、AES モジュールに鍵生成を開
			始させる。
Drdy	In	High	データ入力が完了し、AES モジュールに暗号化
			または復号化を開始させる。
Irdy	In	High	イニシャルベクターを AES モジュールにセッ
			トする。
Crdy	In	High	カウンタ値を AES モジュールにセットする。
Dout	Out	_	暗号文または平文出力。
Kvld	Out	High	鍵生成が終了したことを示す。

表 6 AES_MULTI モジュール入出力信号

Dvld	Out	High	Dout に暗号文または、平文が出力されたこと
			を示す。

4.4 アドレスマップ

"lbus_if"モジュール内には、暗号モジュールを操作するためのレジスタ類が複数設けられている。これらのレジスタは、ローカルバス上にマッピングされている。表 7 にアドレスマップを示す。

アドレス	名称	R/W	機能
0x0002	コントロール・レジスタ	R/W	AES 回路に対して制御信号を出力する
			ためのレジスタ
0x000C	ENC/DEC レジスタ	W	AESを Encrypt か Decrypt で動作させ
			るかを選択するレジスタ
0x000A	AES モード・レジスタ	W	AES のモードを指定するレジスタ
0x000E	鍵幅レジスタ	W	使用する鍵幅の選択をするレジスタ
0x0100	鍵入力レジスタ1	W	鍵入力のビット 127-112
0x0102	鍵入力レジスタ 2	W	鍵入力のビット 111-96
0x0104	鍵入力レジスタ 3	W	鍵入力のビット 95-80
0x0106	鍵入力レジスタ 4	W	鍵入力のビット 79-64
0x0108	鍵入力レジスタ 5	W	鍵入力のビット 63-48
0x010A	鍵入力レジスタ 6	W	鍵入力のビット 47-32
0x010C	鍵入力レジスタ7	W	鍵入力のビット 31-16
0x010E	鍵入力レジスタ 8	W	鍵入力のビット 15-0
0x0120	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ1		127-112
0x0122	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 2		111-96
0x0124	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 3		95-80
0x0126	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 4		79-64
0x0128	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 5		63-48

表7 AES アドレスマップ

0x012A	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 6		47-32
0x012C	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ7		31-16
0x012E	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 8		15-0
0x0130	カウンタレジスタ1	W	カウンタ値入力のビット 127-112
0x0132	カウンタレジスタ 2	W	カウンタ値入力のビット 111-96
0x0134	カウンタレジスタ 3	W	カウンタ値入力のビット 95-80
0x0136	カウンタレジスタ 4	W	カウンタ値入力のビット 79-64
0x0138	カウンタレジスタ 5	W	カウンタ値入力のビット 63-48
0x013A	カウンタレジスタ 6	W	カウンタ値入力のビット 47-32
0x013C	カウンタレジスタ7	W	カウンタ値入力のビット 31-16
0x013E	カウンタレジスタ 8	W	カウンタ値入力のビット 15-0
0x0140	データ入力レジスタ1	W	平文/暗号文入力のビット 127-122
0x0142	データ入力レジスタ 2	W	平文/暗号文入力のビット 111-96
0x0144	データ入力レジスタ 3	W	平文/暗号文入力のビット 95-80
0x0146	データ入力レジスタ 4	W	平文/暗号文入力のビット 79-64
0x0148	データ入力レジスタ 5	W	平文/暗号文入力のビット 63-48
0x014A	データ入力レジスタ 6	W	平文/暗号文入力のビット 47-32
0x014C	データ入力レジスタ7	W	平文/暗号文入力のビット 31-16
0x014E	データ入力レジスタ 8	W	平文/暗号文入力のビット 15-0
0x0180	データ出力レジスタ 1	R	暗号/復号結果のビット 127-112
0x0182	データ出力レジスタ 2	R	暗号/復号結果のビット 111-96
0x0184	データ出力レジスタ 3	R	暗号/復号結果のビット 95-80
0x0186	データ出力レジスタ 4	R	暗号/復号結果のビット 79-64
0x0188	データ出力レジスタ 5	R	暗号/復号結果のビット 63-48
0x018A	データ出力レジスタ 6	R	暗号/復号結果のビット 47-32
0x018C	データ出力レジスタ 7	R	暗号/復号結果のビット 31-16
0x018E	データ出力レジスタ 8	R	暗号/復号結果のビット 15-0
0xFFFC	バージョン・レジスタ	R	FPGA1 のバージョンが 16 進 4 桁で書
			かれている読み出し専用レジスタ

4.5 レジスタ

4.5.1 コントロール・レジスタ

図6 コントロール・レジスタ ビットアサイン

4.5.2 ENC/DECレジスタ

図7 ENC/DEC レジスタ ビットアサイン

4.5.3 AESモード・レジスタ

図8 鍵幅レジスタ ビットアサイン

4.5.4 鍵幅レジスタ

図9 鍵幅レジスタ ビットアサイン

4.5.4 鍵入力レジスタ 1-8

図 10 鍵入力レジスタ 1-8 ビットアサイン

4.5.5 イニシャルベクター入力レジスタ 1-8

図 11 イニシャルベクター入力レジスタ 1-8 ビットアサイン

4.5.6 データ入力レジスタ 1-8

図 12 イニシャルベクター入力レジスタ 1-8 ビットアサイン

4.5.7 データ出力レジスタ 1-8

図13 データ出力レジスタ1-8 ビットアサイン

4.5.8 FPGA1 バージョン・レジスタ

図 14 FPGA1 バージョン・レジスタ ビットアサイン

4.6 動作手順

AES 回路を動作させるには、以下の手順に従って操作を行う。手順は、AES モードおよび鍵幅の違いによりセットするレジスタに違いがある。

4.6.1 ECBモード Encrypt

- 手順1:リセット入力
- 手順2:AESモード・レジスタに'0'をセット(ECBモード)
- 手順3:鍵幅を設定
- 手順4: ENC/DEC レジスタに'0'をセット(Encrypt モード)
- 手順5: 鍵入力1

鍵入力レジスタの1から8に鍵をセット

手順 6: "Krdy"入力

手順7: 鍵幅が128 ビットならば手順10 に移動

手順8: 鍵入力2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順10:データ入力

データ入力レジスタの1から8に平文をセット。

- 手順 11: "Drdy"入力
- 手順12:暗号文の読み出し
 - データ出力レジスタの1から8を読み出だし暗号文を得る
- 手順13:終了でなければ手順10に戻る
- 手順 14:終了

4.6.2 ECBモード Decrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに'0'をセット(ECBモード)
- 手順3:鍵幅を設定
- 手順4:ENC/DEC レジスタに'1'をセット(Decrypt モード)
- 手順5: 鍵入力1 鍵入力レジスタの1から8に鍵をセット
- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順10 に移動
- 手順8: 鍵入力2 鍵入力レジスタの1から8に鍵2をセット
- 手順 9: "Krdy"入力
- 手順10:データ入力

データ入力レジスタの1から8に暗号文をセット。

- 手順 11: "Drdy"入力
- 手順12:平文の読み出し

データ出力レジスタの1から8を読み出だし平文を得る

- 手順13:終了でなければ手順10に戻る
- 手順 14:終了

4.6.3 CBCモード Encrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに'1'をセット(CBCモード)
- 手順3:鍵幅を設定
- 手順4: ENC/DEC レジスタに'0'をセット(Encrypt モード)
- 手順5: 鍵入力1 鍵入力レジスタの1から8に鍵をセット
- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2 鍵入力レジスタの1から8に鍵2をセット
- 手順 9: "Krdy"入力
- 手順10:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 11: "Irdy"入力
- 手順12:データ入力

データ入力レジスタの1から8に平文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし暗号文を得る

- 手順15:終了でなければ手順12に戻る
- 手順 16:終了

4.6.4 CBCモード Decrypt

手順1: リセット入力

- 手順2:AESモード・レジスタに'1'をセット(CBCモード)
- 手順3:鍵幅を設定
- 手順4:ENC/DEC レジスタに'1'をセット(Decrypt モード)
- 手順5: 鍵入力1

鍵入力レジスタの1から8に鍵をセット

- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順10:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 11: "Irdy"入力
- 手順12:データ入力

データ入力レジスタの1から8に暗号文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し
 - データ出力レジスタの1から8を読み出だし平文を得る
- 手順15:終了でなければ手順12に戻る
- 手順 16:終了

4.6.5 CFBモード Encrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに2をセット(CFBモード)
- 手順3:鍵幅を設定
- 手順4: ENC/DEC レジスタに'0'をセット(Encrypt モード)
- 手順5: 鍵入力1 鍵入力レジスタの1から8に鍵をセット
- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2 鍵入力レジスタの1から8に鍵2をセット
- 手順 9: "Krdy"入力
- 手順10:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 11: "Irdy"入力
- 手順12:データ入力

データ入力レジスタの1から8に平文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし暗号文を得る

手順15:終了でなければ手順12に戻る

手順16:終了

4.6.6 CFBモード Decrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに2をセット(CFBモード)
- 手順3:鍵幅を設定
- 手順4: ENC/DEC レジスタに'1'をセット(Decrypt モード)
- 手順5: 鍵入力1

鍵入力レジスタの1から8に鍵をセット

- 手順 6 : "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順 8: 鍵入力 2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順 10 : イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 11: "Irdy"入力
- 手順12:データ入力

データ入力レジスタの1から8に暗号文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし平文を得る

- 手順15:終了でなければ手順12に戻る
- 手順16:終了

4.6.7 OFBモード Encrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに'3'をセット(OFBモード)
- 手順3:鍵幅を設定
- 手順4:ENC/DEC レジスタに'0'をセット(Encrypt モード)
- 手順5: 鍵入力1 鍵入力レジスタの1から8に鍵をセット

- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順10:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット 手順11:"Irdy"入力

手順12:データ入力

データ入力レジスタの1から8に平文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し データ出力レジスタの1から8を読み出だし暗号文を得る
- 手順15:終了でなければ手順12に戻る
- 手順 16:終了

4.6.8 OFBモード Decrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに'3'をセット(OFBモード)
- 手順3:鍵幅を設定
- 手順4:ENC/DEC レジスタに'1'をセット(Decrypt モード)
- 手順5: 鍵入力1

鍵入力レジスタの1から8に鍵をセット

- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2 鍵入力レジスタの1から8に鍵2をセット
- 手順 9: "Krdy"入力
- 手順10:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 11: "Irdy"入力
- 手順12:データ入力
 - データ入力レジスタの1から8に暗号文をセット。
- 手順 13: "Drdy"入力

手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし平文を得る 手順15:終了でなければ手順12に戻る 手順16:終了

4.6.9 CTRモード Encrypt

- 手順1: リセット入力
- 手順2:AESモード・レジスタに'4'をセット(CTRモード)
- 手順3:鍵幅を設定
- 手順4:ENC/DEC レジスタに'0'をセット(Encrypt モード)
- 手順 5: 鍵入力 1

鍵入力レジスタの1から8に鍵をセット

- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順 8: 鍵入力 2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順 10 : カウンタ入力

カウンタ入力レジスタの1から8にカウンタ値をセット

- 手順 11: "Crdy"入力
- 手順 12 : データ入力

データ入力レジスタの1から8に平文をセット。

- 手順 13 : "Drdy"入力
- 手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし暗号文を得る

- 手順15:終了でなければ手順12に戻る
- 手順 16:終了

4.6.4 CTRモード Decrypt

手順1: リセット入力

手順2:AESモード・レジスタに'4'をセット(CTRモード)

手順3:鍵幅を設定

- 手順4:ENC/DEC レジスタに'1'をセット(Decrypt モード)
- 手順**5**: 鍵入力1

鍵入力レジスタの1から8に鍵をセット

- 手順 6: "Krdy"入力
- 手順7: 鍵幅が128 ビットならば手順12 に移動
- 手順8: 鍵入力2

鍵入力レジスタの1から8に鍵2をセット

- 手順 9: "Krdy"入力
- 手順 10:カウンタ値入力
 - カウンタ入力レジスタの1から8にカウンタ値をセット
- 手順 11: "Crdy"入力
- 手順12:データ入力

データ入力レジスタの1から8に暗号文をセット。

- 手順 13: "Drdy"入力
- 手順14:暗号文の読み出し

データ出力レジスタの1から8を読み出だし平文を得る

手順 15:終了でなければ手順 12 に戻る

手順 16:終了

5. ブロック暗号 CMAC

CMAC 暗号回路は、NIST Special Publication 800-38B の仕様書に則った暗号回路である。共通鍵は、128 ビット、192 ビットおよび 256 ビットのすべてをサポートする。

5.1 ファイル構成

ファイル名	種類	内容
FPGA1_CMAC.v	Verilog-HDL	FPGA1_CMAC の最上位となる
		HDL ファイル
syncfifo_8x2047.v	Verilog-HDL	8ビット幅で深さが 2047 ワードの
		同期型 FIFO を記述した HDL ファ
		イル

表7 FPGA1_CMAC ファイル構成

ctrl_lbus.v	Verilog-HDL	FPGA2 とのローカルバス・インタ
		ーフェースを記述した HDL ファ
		イル
lbus_if.v	Verilog-HDL	暗号モジュールの制御を記述した
		HDL ファイル
CMAC.v	Verilog-HDL	CMAC 暗号モジュールのトップ
		HDL ファイル
FPGA1_CMAC_TB1.v	Verilog-HDL	FPGA1_CMAC のテストベンチを
		記述した HDL ファイル
CMAC_TB1.v	Verilog-HDL	CMAC 回路単体のテストベンチを
		記述した HDL ファイル
pin_sasebo_gii_lx50.ucf	構成設定	FPGA1_CMAC の構成を規定した
		ファイル

5.2 FPGA1_CMACモジュール構成

FPGA1_CMACの各モジュールは、以下のような構成で接続される。

5.3 CMACモジュール入出力信号

表8に暗号回路の入出力信号を示す。これらの信号は、"lbus_if"モジュールに接続され制御される。

信号名	方向	アクティブ	機能
RSTn	In	Low	リセット入力。 CMAC モジュールのすべての
			回路が初期化される。
CLK	In	Rise	システムクロック入力。CMAC モジュールは、
			CLK の立ち上りエッジに同期して動作する。
EN	In	High	動作イネーブル信号。"EN"を'1'にすることによ
			り AES モジュールが動作可能となる。
Busy	Out	High	"Busy"が'1'のとき CMAC モジュールが動作中
			であることを示めす。
Kwidth[1:0]	In	—	使用する鍵のビット幅を指定する。'0'のときに
			128 ビット鍵、'1'で 192 ビット鍵、'2'で 256 ビ
			ット鍵となる。
Kin[127:0]	In	_	鍵入力
Din[127:0]	In	—	平文または暗号文入力。EncDec が'0'のときは平
			文、'1'のときは暗号文入力となる。
Lin[127:0]	In	_	レングス入力
Krdy	In	High	鍵入力が完了し、CMAC モジュールに鍵生成を
			開始させる。
Drdy	In	High	データ入力が完了し、CMAC モジュールに暗号
			化または復号化を開始させる。
Irdy	In	High	イニシャルベクターを CMAC モジュールにセ
			ットする。
Lrdy	In	High	レングス値を CMAC モジュールにセットする。
Dout	Out	_	暗号文または平文出力。
Kvld	Out	High	鍵生成が終了したことを示す。
Dvld	Out	High	Dout に暗号文または、平文が出力されたことを
			示す。

表8 CMAC モジュール入出力信号

5.4 アドレスマップ

"lbus_if"モジュール内には、暗号モジュールを操作するためのレジスタ類が複数設けられている。これらのレジスタは、ローカルバス上にマッピングされている。表 9 にアドレスマップを示す。

表9 CMAC アドレスマップ

アドレス	名称	R/W	機能
0x0002	コントロール・レジスタ	R/W	AES 回路に対して制御信号を出力する
			ためのレジスタ
0x000E	鍵幅レジスタ	W	使用する鍵幅の選択をするレジスタ
0x0080	レングス・レジスタ1	W	レングス入力のビット 32-16
0x0082	レングス・レジスタ 2	W	レングス入力のビット 15-0
0x0100	鍵入力レジスタ 1	W	鍵入力のビット 127-112
0x0102	鍵入力レジスタ 2	W	鍵入力のビット 111-96
0x0104	鍵入力レジスタ 3	W	鍵入力のビット 95-80
0x0106	鍵入力レジスタ 4	W	鍵入力のビット 79-64
0x0108	鍵入力レジスタ 5	W	鍵入力のビット 63-48
0x010A	鍵入力レジスタ 6	W	鍵入力のビット 47-32
0x010C	鍵入力レジスタ7	W	鍵入力のビット 31-16
0x010E	鍵入力レジスタ 8	W	鍵入力のビット 15-0
0x0140	データ入力レジスタ1	W	平文/暗号文入力のビット 127-122
0x0142	データ入力レジスタ 2	W	平文/暗号文入力のビット 111-96
0x0144	データ入力レジスタ 3	W	平文/暗号文入力のビット 95-80
0x0146	データ入力レジスタ 4	W	平文/暗号文入力のビット 79-64
0x0148	データ入力レジスタ 5	W	平文/暗号文入力のビット 63-48
0x014A	データ入力レジスタ6	W	平文/暗号文入力のビット 47-32
0x014C	データ入力レジスタ7	W	平文/暗号文入力のビット 31-16
0x014E	データ入力レジスタ8	W	平文/暗号文入力のビット 15-0
0x0180	データ出力レジスタ 1	R	暗号/復号結果のビット 127-112
0x0182	データ出力レジスタ 2	R	暗号/復号結果のビット 111-96
0x0184	データ出力レジスタ 3	R	暗号/復号結果のビット 95-80
0x0186	データ出力レジスタ 4	R	暗号/復号結果のビット 79-64
0x0188	データ出力レジスタ 5	R	暗号/復号結果のビット 63-48
0x018A	データ出力レジスタ 6	R	暗号/復号結果のビット 47-32

0x018C	データ出力レジスタ 7	R	暗号/復号結果のビット 31-16
0x018E	データ出力レジスタ 8	R	暗号/復号結果のビット 15-0
0xFFFC	バージョン・レジスタ	R	FPGA1 のバージョンが 16 進 4 桁で書
			かれている読み出し専用レジスタ

5.5 レジスタ

5.5.1 コントロール・レジスタ

図16 コントロール・レジスタ ビットアサイン

5.5.2 鍵幅レジスタ

図 17 鍵幅レジスタ ビットアサイン

5.5.3 レングス入力レジスタ 1, 2

図 18 レングス入力レジスタ 1,2 ビットアサイン

5.5.4 鍵入力レジスタ 1-8

図 19 鍵入力レジスタ 1-8 ビットアサイン

5.5.5 イニシャルベクター入力レジスタ 1-8

図 20 イニシャルベクター入力レジスタ 1-8 ビットアサイン

5.5.6 データ入力レジスタ 1-8

図 21 イニシャルベクター入力レジスタ 1-8 ビットアサイン

5.5.7 データ出力レジスタ 1-8

図 22 データ出力レジスタ 1-8 ビットアサイン

5.5.8 FPGA1 バージョン・レジスタ

図 23 FPGA1 バージョン・レジスタ ビットアサイン

5.6 動作手順

CMAC 回路を動作させるには、以下の手順に従って操作を行う。

- 手順1: リセット入力
- 手順2:鍵幅を設定
- 手順3: 鍵入力

鍵入力レジスタの1から8に鍵1をセット

- 手順 4: "Krdy"入力
- 手順5: 鍵幅が128 ビットならば手順10 に移動
- 手順6: 鍵入力2 鍵入力レジスタの1から8に鍵2をセット
- 手順 7: "Krdy"入力
- 手順8:イニシャルベクター入力 イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット
- 手順 9: "Irdy"入力
- 手順 10: レングス入力

レングス入力レジスタの1,2にレングス値をセット

- 手順 11: "Lrdy"入力
- 手順12:データ入力

データ入力レジスタの1から8にデータをセット。

- 手順 13: "Drdy"入力
- 手順14:終了でなければ手順12に戻る
- 手順 15: CMAC 値の読み出し

データ出力レジスタの1から8を読み出だす。

手順 16:終了

6. ストリーム暗号MUGI

MUGIは、ストリーム暗号向けの疑似乱数生成器である。128 ビットの秘密鍵と128 ビットの公開イニシャルベクターをパラメータとして持つ。

6.1 ファイル構成

表 10	FPGA1_MUGI ファイル構成	
		_

ファイル名	種類	内容
FPGA1_MUGI.v	Verilog-HDL	FPGA1_MUGI の最上位となる
		HDL ファイル
syncfifo_8x2047.v	Verilog-HDL	8ビット幅で深さが 2047 ワードの
		同期型 FIFO を記述した HDL ファ
		イル
ctrl_lbus.v	Verilog-HDL	FPGA2 とのローカルバス・インタ
		ーフェースを記述した HDL ファ
		イル
mugi_lbus_if.v	Verilog-HDL	暗号モジュールの制御を記述した
		HDL ファイル
MUGI.v	Verilog-HDL	MUGI 暗号モジュールのトップ
		HDL ファイル
FPGA1_MUGI_TB1.v	Verilog-HDL	FPGA1_MUGI 暗号回路のテスト
		ベンチを記述した HDL ファイル
MUGI_TB.v	Verilog-HDL	MUGI 暗号回路単体のテストベン
		チを記述した HDL ファイル
pin_sasebo_gii_lx50.ucf	構成設定	FPGA1_MUGI の構成を規定した
		ファイル

6.2 FPGA1_MUGIモジュール構成

FPGA1_MUGIの各モジュールは、以下のような構成で接続される。

図 24 FPGA1_MUGI のモジュール構成

6.3 MUGIモジュール入出力信号

表 11 に暗号回路の入出力信号を示す。これらの信号は、"lbus_if"モジュールに接続され 制御される。

信号名	方向	アクティブ	機能
RSTn	In	Low	リセット入力。MUGI モジュールのすべての回
			路が初期化される。
CLK	In	Rise	システムクロック入力。MUGI モジュールは、
			CLK の立ち上りエッジに同期して動作する。
EN	In	High	動作イネーブル信号。"EN"を'1'にすることによ
			り AES モジュールが動作可能となる。
Busy	Out	High	"Busy"が'1'のとき AES モジュールが動作中で
			あることを示めす。
Kin[127:0]	In	—	鍵入力
Iin[127:0]	In	_	イニシャルベクター入力
Krdy	In	High	鍵入力を MUGI モジュールにセットし、初期化
			1を開始させる。
Irdy	In	High	イニシャルベクターを MUGI モジュールにセッ
			トし、初期化、アップデートを開始する。
Rrdy	In	High	ラウンドを一つ進めて乱数を発生させる。
Dout	Out	—	乱数出力。
Kvld	Out	High	鍵生成が終了したことを示す。
Rvld	Out	High	Dout に乱数が出力されたことを示す。

表 11 MUGI モジュール入出力信号

6.4 アドレスマップ

"lbus_if"モジュール内には、暗号モジュールを操作するためのレジスタ類が複数設けられている。これらのレジスタは、ローカルバス上にマッピングされている。表 12 にアドレスマップを示す。

アドレス	名称	R/W	機能
0x0002	コントロール・レジスタ	R/W	MUGI 回路に対して制御信号を出力す
			るためのレジスタ
0x0100	鍵入力レジスタ 1	W	鍵入力のビット 127-112
0x0102	鍵入力レジスタ 2	W	鍵入力のビット 111-96
0x0104	鍵入力レジスタ 3	W	鍵入力のビット 95-80
0x0106	鍵入力レジスタ 4	W	鍵入力のビット 79-64

表 12 MUGI アドレスマップ

0x0108	鍵入力レジスタ 5	W	鍵入力のビット 63-48
0x010A	鍵入力レジスタ6	W	鍵入力のビット 47-32
0x010C	鍵入力レジスタ7	W	鍵入力のビット 31-16
0x010E	鍵入力レジスタ8	W	鍵入力のビット 15-0
0x0120	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 1		127-112
0x0122	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 2		111-96
0x0124	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 3		95-80
0x0126	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 4		79-64
0x0128	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 5		63-48
0x012A	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 6		47-32
0x012C	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ7		31-16
0x012E	イニシャルベクター・	W	イニシャルベクター値入力のビット
	レジスタ 8		15-0
0x0180	データ出力レジスタ1	R	暗号/復号結果のビット 127-112
0x0182	データ出力レジスタ 2	R	暗号/復号結果のビット 111-96
0x0184	データ出力レジスタ 3	R	暗号/復号結果のビット 95-80
0x0186	データ出力レジスタ 4	R	暗号/復号結果のビット 79-64
0x0188	データ出力レジスタ 5	R	暗号/復号結果のビット 63-48
0x018A	データ出力レジスタ 6	R	暗号/復号結果のビット 47-32
0x018C	データ出力レジスタ7	R	暗号/復号結果のビット 31-16
0x018E	データ出力レジスタ 8	R	暗号/復号結果のビット 15-0
0xFFFC	バージョン・レジスタ	R	FPGA1 のバージョンが 16 進 4 桁で書
			かれている読み出し専用レジスタ

6.5 レジスタ

6.5.1 コントロール・レジスタ

図 25 コントロール・レジスタ ビットアサイン

6.5.2 鍵入力レジスタ 1-8

図 26 鍵入力レジスタ 1-8 ビットアサイン

6.5.3 イニシャルベクター入力レジスタ 1-8

図 28 データ出力レジスタ 1-8 ビットアサイン

6.5.5 FPGA1 バージョン・レジスタ

FPGA1 バージョン 16 進4桁

図 29 FPGA1 バージョン・レジスタ ビットアサイン

6.6 動作手順

MUGI 回路を動作させるには、以下の手順に従って操作を行う。

- 手順1: リセット入力
- 手順2: 鍵入力

鍵入力レジスタの1から8に鍵値をセット

- 手順 3: "Krdy"入力
- 手順4:イニシャルベクター入力

イニシャルベクター入力レジスタの1から8にイニシャルベクターをセット

- 手順 5: "Irdy"入力
- 手順6:乱数読み出し

データ出力レジスタの1から4を読み出して乱数値を得る。

手順 7: "Rrdy"入力

手順8:乱数読み出し

データ出力レジスタの1から4を読み出して乱数値を得る。 手順9:終了でなければ手順6に戻る 手順10:終了

7. HMAC

7.1 ファイル構成

ファイル名	種類	内容
FPGA1_SHA256.v	Verilog-HDL	FPGA1_SHA256 の最上位となる
		HDL ファイル
syncfifo_8x2047.v	Verilog-HDL	8 ビット幅で深さが 2047 ワードの
		同期型 FIFO を記述した HDL ファ
		イル
ctrl_lbus.v	Verilog-HDL	FPGA2 とのローカルバス・インタ
		ーフェースを記述した HDL ファ
		イル
sha_lbus_if.v	Verilog-HDL	暗号モジュールの制御を記述した
		HDL ファイル
SHA256.v	Verilog-HDL	SHA256モジュールのトップ HDL
		ファイル
FPGA1_SHA_TB1.v	Verilog-HDL	FPGA1_SHA256 回路のテストベ
		ンチを記述した HDL ファイル
SHA256_TB.v	Verilog-HDL	SHA256 回路単体のテストベンチ
		を記述した HDL ファイル
pin_sasebo_gii_lx50.ucf	構成設定	FPGA1_MUGI の構成を規定した
		ファイル

表 13 FPGA1_SHA256 ファイル構成

7.2 FPGA1_SHA256 モジュール構成

FPGA1_の各モジュールは、以下のような構成で接続される。

図 30 FPGA1_SFA256 モジュール構成

7.3 FPGA1_SHA256 入出力信号

表 11 に暗号回路の入出力信号を示す。これらの信号は、"lbus_if"モジュールに接続され 制御される。

信号名	方向	アクティブ	機能	
RSTn	In	Low	リセット入力。SHA-256 モジュールのすべて	
			の回路が初期化される。	
CLK	In	Rise	システムクロック入力。SHA-256 モジュール	
			は、CLK の立ち上りエッジに同期して動作す	
			る。	
EN	In	High	動作イネーブル信号。"EN"を'1'にすることに	
			より SHA-256 モジュールが動作可能となる。	
Busy	Out	High	"Busy"が'1'のとき SHA-256 モジュールが動	
			作中であることを示めす。	
INIT	In	High	SHA-256 モジュールを初期化する。	
MSGin[31:0]	In	_	メッセージ入力。	
Mrdy	In	High	メッセージ入力が完了し、SHA256 回路に動	
			作要求を行う。	
Hout[255:0]	Out	—	ハッシュ値の出力。	
Hvld	Out	High	ハッシュ値の生成が終了したことを示す。	

表 14 SHA-256 モジュール入出力信号

7.4 アドレスマップ

"lbus_if"モジュール内には、暗号モジュールを操作するためのレジスタ類が複数設けられている。これらのレジスタは、ローカルバス上にマッピングされている。表 15 にアドレスマップを示す。

表 15 HMAC アドレスマップ

アドレス	アドレス 名称		機能
0x0002 コントロール・レジスタ		R/W	SHA256 回路に対して制御信号を出力
			するためのレジスタ
0x0140	データ入力レジスタ1	W	平文入力のビット 31-16
0x0142	データ入力レジスタ 2	W	平文入力のビット 15-0
0x0180	データ出力レジスタ 1	R	暗号/復号結果のビット 255-240
0x0182	データ出力レジスタ 2	R	暗号/復号結果のビット 239-224
0x0184	データ出力レジスタ 3	R	暗号/復号結果のビット 223-208
0x0186	データ出力レジスタ 4	R	暗号/復号結果のビット 191-176
0x0188	データ出力レジスタ 5	R	暗号/復号結果のビット 175-160
0x018A	データ出力レジスタ 6	R	暗号/復号結果のビット 159-144
0x018C	データ出力レジスタ7	R	暗号/復号結果のビット 143-128
0x018E	データ出力レジスタ 8	R	暗号/復号結果のビット 15-0
0x0190	データ出力レジスタ 9	R	暗号/復号結果のビット 127-112
0x0192	データ出力レジスタ 10	R	暗号/復号結果のビット 111-96
0x0194	データ出力レジスタ 11	R	暗号/復号結果のビット 95-80
0x0196	データ出力レジスタ 12	R	暗号/復号結果のビット 79-64
0x0198	データ出力レジスタ 13	R	暗号/復号結果のビット 63-48
0x019A	データ出力レジスタ 14	R	暗号/復号結果のビット 47-32
0x019C	データ出力レジスタ 15	R	暗号/復号結果のビット 31-16
0x019E	データ出力レジスタ 16	R	暗号/復号結果のビット 15-0
0xFFFC	バージョン・レジスタ	R	FPGA1 のバージョンが 16 進 4 桁で書
			かれている読み出し専用レジスタ

7.5 レジスタ

7.5.1 コントロール・レジスタ

図 31 コントロール・レジスタ ビットアサイン

7.5.2 データ入力レジスタ 1, 2

図 32 データ入力レジスタ 1,2 ビットアサイン

7.5.3 データ出力レジスタ 1-16

図 33 データ出力レジスタ 1,2 ビットアサイン

7.5.4 FPGA1 バージョン・レジスタ

図 34 FPGA1 バージョン・レジスタ ビットアサイン

7.6 動作手順

SHA256 回路を動作させるには、以下の手順に従って操作を行う。 SHA256 は、256 ビットのデータ単位に処理を行うため、データは、256 ビット単位で入力しなければならない。

- 手順1: リセット入力
- 手順 2: SHA256 初期化
- 手順3:メッセージ入力
 - データ入力レジスタ1,2にデータをセット。
- 手順 4: "Mrdy"入力
- 手順5:手順3,4を16回繰り返す
- 手順6:入力メッセージ終了で手順7に、メッセージがまだある場合は手順3に戻る
- 手順7:ハッシュ値の読み出し

データ出力レジスタの1から16を読み出してハッシュ値を得る。

8. 制御サンプルソフトウェア

制御サンプルソフトウェアは、SASEBO-GII-AES 暗号 FPGA ボードに実装されている 4 種類の暗号回路を SASEBO-GII-AES 暗号 FPGA ボードの USB ポートを通して PC か ら制御を行うためのプログラムである。これらのプログラムは、C#言語で記述され開発ツ ールは、Microsoft Visual C# 2008 Express Edition を使用している。

サンプルプログラムは、Visual C#のプロジェクトの形で以下の4種類用意する。

- SASEBO_AES_sample
- \cdot SASEBO_CMAC_sample
- · SASEBO_MUGI_sample
- \cdot SASEBO_SHA256_sample

8.1 プロジェクトの構成ファイル

各プロジェクトは、表16に示されるファイルにより構成されている。

ファイル名	内容		
Program.cs	プログラムのメインルーチンのソースファイルで、プログ		
	ラムごとに異なる。		
SASEBO_CMD_interface.cs	FPGA1 のローカルバスのアクセス手順を記述したソース		
	ファイルで、すべてのプロジェクトで共通に使用する。		
ft245rl_interface.cs	USB コントローラ用の DLL プログラムを呼び出すための		
	ラッパ関数のソースファイルで、すべてのプロジェクトで		
	共通に使用する。		
FTD2XX_NET.dll	USB コントローラ用の DLL ファイルで、 すべてのプロジ		
	ェクトで共通に使用する。		

表 16 プロジェクトの構成ファイル

8.2 プログラムの構造

サンプルプログラムは、暗号回路に対応して4種類あるが、基本的に同様の構造である。 いくつかの簡単なコマンドを規定し、そのコマンドが書かれたテキスト形式のスクリプト ファイルを読み込んで、その内容に従い FPGA1 内のレジスタを読み書きする。図 35 にサ ンプルプログラムの概略フローチャートを示す。

図 35 サンプルプログラム概略フローチャート

暗号回路により、コマンドの数や各コマンド処理に違いがあるが基本な処理内容は同じ である。

8.3 スクリプトファイル

スクリプトファイルで使用できるコマンドを表17に示す。

表記	意味	内容	使用暗号
\$R	リセット入力	暗号回路にリセットを入力する。	全暗号
F	スクリプト終了	プログラムを終了する。	全暗号
\$O	結果読み出し	暗号回路の結果を読み出して画面に表	全暗号
		示する。	
#K	鍵セット	鍵レジスタに鍵をセットし、"Krdy"を	AES, CMAC,
		入力する。	MUGI, HMAC
#C	カウンタ値入力	カウント・レジスタにカウント値をセ	AES
		ットし、"Crdy'を入力する。	
#I	イニシャルベクタ	イニシャルベクター・レジスタにイニ	AES, MUGI
	一入力	シャルベクター値をセットし、"Irdy"	
		を入力する。	
#L	レングス入力	レングス・レジスタにレングス値をセ	CMAC
		ットし、"Lrdy"を入力する。	
#D	データ入力	データ入力レジスタに入力データをセ	AES, CMAC,
		ットし、"Drdy"を入力する。	HMAC
#E	ENC/DEC 入力	ENC/DEC レジスタに動作モードをセ	AES
		ットする。	
#M	AES モード入力	AES モード・レジスタに動作させる	AES
		AES モードをセットする。	
#W	鍵幅入力	鍵幅レジスタに使用する鍵幅をセット	AES, CMAC
		する。	

表17 スクリプトファイルのコマンド表

8.4 AES

AES サンプルプログラムは、ファイル名 "aes.txt"のスクリプトファイルを読み込んで 実行する。 リスト1に AES 暗号のスクリプトファイルの記述例を示す。 リスト1 AES-ECB-128bitKey Encrypt サンプルスクリプト

\$R	y	セット入力
#E 0	E	ncrypt モード
# M 0	E	CB モード
#W 0		28 ビット鍵
#K 2b7	/e151628aed2a6abf7158809cf4f3c	赵力
#D 6bc	1bee22e409f96e93d7e117393172a · · · · · · · · · 平	文入力
\$O	••••••	诗大出力
F		クリプト終了

リスト1の実行結果を図36に示す。

SASEBO AES control sample program start Number of FTDI device : 2 Successful to open device. ver : 0001 AES Reset!! Encrypt MODE: 0 KEY WIDTH: 0 KEY: 2B7E151628AED2A6ABF7158809CF4F3C DATA: 6BC1BEE22E409F96E93D7E117393172A OUT: 3AD77BB407DA3660A89ECAF32466EF97

Press enter.

図 36 リスト1 実行結果

リスト2 AES-ECB-128bitKey Decrypt サンプルスクリプト

\$R		リセット入力
#E 1		Decrypt モード
#M 0		ECB モード
#W 0		128 ビット鍵
#K 2b7	e151628aed2a6abf7158809cf4f3c · · · · · · · · · · · · · · · · · · ·	鍵入力
#D 3ad	77bb40d7a3660a89ecaf32466ef97	暗号入力
\$O		平文出力
F		スクリプト終了

8.5 CMAC

CMAC サンプルプログラムは、ファイル名 "cmac.txt" のスクリプトファイルを読み込んで実行する。リスト3に CMAC スリプトファイルの記述例を示す。

リスト3 CMAC-128bitKey サンプルスクリプト

\$R	リセット入力
#W 0	128 ビット鍵
#L 00000040 ·····	レングス入力
#K 2b7e151628aed2a6abf7158809cf4f3c ••••••	鍵入力
#D 6bc1bee22e409f96e93d7e117393172a	平文入力
#D ae2d8a571e03ac9c9eb76fac45af8e51	平文入力
#D 30c81c46a35ce411e5fbc1191a0a52ef	平文入力
#D f69f2445df4f9b17ad2b417be66c3710	平文入力
\$0	暗号文出力
\$F	スクリプト終了

8.6 MUGI

MUGI サンプルプログラムは、ファイル名 "mugi.txt"のスクリプトファイルを読み込ん で実行する。リスト4に MUGI スリプトファイルの記述例を示す。

リスト4 MUGI サンプルスクリプト

\$R		・・・・・・・ リセット入力
#K 00	0102030405060708090A0B0C0D0E0F	•••••• 鍵入力
#I F0I	E0D0C0B0A090807060504030201000	・・・・・・ 初期ベクター入力
\$O		•••••• 乱数出力
\$T		•••••• 乱数発生
\$O		•••••• 乱数出力
\$T		••••••• 乱数発生
\$O		•••••• 乱数出力
T		••••••• 乱数発生
\$O		•••••• 乱数出力
\$F		・・・・・ スクリプト終了

8.7 HMAC

HMAC サンプルプログラムは、ファイル名 "sha256.txt" のスクリプトファイルを読み 込んで実行する。平文の入力は、256 ビット単位で入力しなければならない。リスト 5 に HMAC スリプトファイルの記述例を示す。 リスト5 HMAC サンプルスクリプト

\$R	• • • • • • • •	•••••	••••		• • • • •	リセット入力
#D 6162	6380	• • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • •	••••	平文入力
#D 0000	00000	• • • • • • • • • • •	•••••		• • • • •	平文入力
#D 0000	00000		•••••		• • • • •	平文入力
#D 0000	00000		•••••		• • • • •	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000		• • • • • • • • • • •		••••	平文入力
#D 0000	00000		• • • • • • • • • • •		••••	平文入力
#D 0000	0000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				••••	平文入力
#D 0000	00000				• • • • •	平文入力
#D 0000	00018				• • • • •	平文入力
\$O		•••••	••••		• • • • •	ハッシュ出力
\$F		•••••	• • • • • • • • • • •		••••	スクリプト終了