SASEBO Waveform Acquisition

Programming Guide

[Ver. 0.3]
[image: image1.png]Oscilloscope
class

Tracer class

Controller
class

r

TraceReport
class

power
waveform

Form_Controller class plain text

- cipher text
- waveform

@ experiment results
@ oscilloscope settings

SASEBO
class

cipher text

October 1st, 2010

National Institute of Advanced Industrial Science and Technology

Research Center of Information Security
1. Introduction
This guide describes the programming components, class hierarchies and points to modify the SASEBO_Acquistion for programmers who want to change the card’s behavior.　The concrete functions provided to end-users are not described in this document. Refer to Users’ Manual.　In this text, we’ll use programming language C# and .NET 3.5. Oscilloscopes should have a VISA interface available.

2. Structure
In SASEBO Acquisition, each function is implemented and based on an MVC (Model, View, Control) model. Entities of Model, View and Control are realised as C# classes:
· User Interface
Corresponds to the View of MVC model.
· Part of Executing (Controller, Tracer)
Corresponds to the Control of MVC model, which has a task control function that manages an experimental environment, repeats a small trial a specified number of times and quits the task gracefully if user canceled. One of the Models of MVC instructs a SASEBO board (actual device) to execute AES encryption at appropriate timing and then retrieves the result SASEBO generated.
· Oscilloscope Model
One of the Models of MVC, which sets up an oscilloscope instrument that is visa available and measures power consumption waveforms when SASEBO is working.
· Waveform Model
One of the Models of MVC, which represents power waves, and stores them as XML files afterword.
[image: image10.png]SASEBO

[image: image11.png]

Fig. 1 SASEBO Waveform Acquisition overview
[image: image2.emf]View

Form_Controller class

Model

SASEBO classes

Controller

configure

Tracer class

Model

Waveform class

Model

Oscilloscope classes

generate

Controller class

encryption

waveform

acquisition

Fig. 2 MVC correspondences
3. SASEBO_GII_AES_rev1 class
SASEBO_GII_AES_rev1 class represents an actual SASEBO GII board. It is using fundamental functions provided by SASEBOBaseModule abstract class which can read from and write to SASEBO by FTDI_USB or RS232 via Communicable interface. If you want to change the communication mechanism between a PC and SASEBO, you can create a new class that implements Communicable interface to SASEBO_GII_rev1’s constructor. For instance, implement a new TCP/IP Communicable class if PC and SASEBO can use TCP/IP.

[image: image3.emf]Tracer

Communicable

FTDI_USB RS232

SASEBO_GII_AES_rev1

SASEBOBaseModule

read / write

execute

ISASEBO

Fig. 3　SASEBO class hierarchy
3.1 Initialization

SASEBO_GII_AES_rev1 object requires initializing with the init method. It has two syntax formats defined as interface. Notice the following limitation:

· Second one doesn’t work for AES (4th parameter, param, is never used).
void ISASEBO.init(SASEBOCore core, Mode mode, Key key)

void ISASEBO.init(SASEBOCore core, Mode mode, Key key, SASEBOParam param)

3.2 Execution
SASEBO_GII_AES_rev1 object does encryption which was indicated at initialization. There are two syntax formats.

void ISASEBO.execute(byte[] input, byte[] output)

byte[] ISASEBO.execute(byte[] input)

3.3 Completed
SASEBO object releases the resources with Dispose method when the experiment is completed. By default, it closes the USB connection and releases the port.
4. Oscilloscope classes
Every oscilloscope class inherits the Oscilloscope class. Oscilloscope class is an abstract class that implements the IOscilloscope interface. So, each oscilloscope child class implements the following methods.
	Method IOscilloscope requiring
	Description

	void init()
	init() will be one time called by Tracer to configure the oscilloscope when the experiment starts.

	void activate()
	activate() will be called by Tracer to make the oscilloscope’s trigger active to get signal when experiment starts.

	void acquire()
	Before capturing the sequence of waveforms, acquire() will be called by Tracer to setup the oscilloscope’s internal memory.
After this, the oscilloscope should wait for the next trigger.

	float[] correct ()
	collect() will be called by Tracer after the oscilloscope captured waveform signals to retrieve it from oscilloscope’s internal memory.

	void close ()
	close() will be called by Tracer to close VISA connection between PC and oscilloscope when experiment is completed.

[image: image4.emf]IHaveDisplay

DSO8104A

IOscilloscope

Oscilloscope

None Visa Oscilloscope

DSO1024A DSO6104A

Tracer

acquire / collect

Fig. 4　Oscilloscope class hierarchy

4.1 Properties
Every oscilloscope is configured using properties.　The properties are listed as below.　Several properties have the read-only attribute so that they cannot be set and modified from the GUI.
	Property
	Description

	string Addr [get, set]
	VISA resource address

	override string Id [get]
	Return value of VISA *IDN? command

	string[] Config [get, set]
	Initial configuration

Referred by init method

	XRanges XRange [get, set]
	X-axis scale.

	YRanges YRange [get, set]
	Y-axis scale

	double XOffset [get, set]
	Offset of X-axis direction, the unit is seconds.

	double YOffset [get, set]
	Offset of Y-axis direction, the unit is volts.

	override int YMin [get, set]
	Minimum Y value of waveforms that can be obtained by Waveform command

	override int YMax [get, set]
	Maximum Y value of waveforms that can be obtained by Waveform command.

	int Wait [get, set]
	Inserted wait whose unit is milliseconds when executing acquire method.
Some oscilloscopes need a wait after activating trigger.

	string TIMEBASE_OFFSET_COMMAND [get, set]
	Actual oscilloscope’s command that sets X-axis offset.

	string TIMEBASE_SCALE_COMMAND [get, set]
	Actual oscilloscope’s command that sets X-axis scale.

	string CHANNEL_OFFSET_COMMAND [get, set]
	Actual oscilloscope’s command that sets Y-axis offset.

	string CHANNEL_SCALE_COMMAND [get, set]
	Actual oscilloscope’s command that sets Y-axis scale.

	override bool Inverse [get, set]
	To reconcile waveforms’ Y-values and drawing coordinate system.
Switch it to True if you use an oscilloscope which decreases Y-values when increasing voltage.

4.2 The captured waveform values
The values of waveforms which you collected from oscilloscope are not modified at all. What you collected is displayed as is. If you need accurate voltage values, you have to convert waveform value to voltage on the fly according to oscilloscope’s specification. According to the quotation below, for instance, DSO1024A takes between the minimum value 1 and the maximum value 200 for signal. As you see, it’s not actual voltage. However, SASEBO_Acquisition does not modify it. Unless of course, you modified the program.
[image: image5.png]screen data (600 points)

—_——

YINCrement = voltage
between successive Y values

TiMebase:OFFSet) = VerticalScale/25
T y=1 YREFerence =100
7T\ \l \
f\ SN
YORigin (V) 0
XREFerence = 0
B —

XINCrement (t) = -TiMebase:SCALe / 50 = time between successive screen data points

Figure3 Screen Data (Waveform Points Mode = NORMAL)

Fig. 5　Quoted from DSO1024A manual
4.3 IHasDisplay interface
In an oscilloscope like DSO8104A, there is a difference between its width (it’s the number of captured samples) you collected with the waveform command and the number of samples displayed. In that case, you may need to implement the IHasDsiplay interface on the oscilloscope class. You may also reduce the number of samples for efficiency. The IHasDisplay interface adds two properties which indicate the index and the number to be displayed on the screen (outside of range would be discarded). If you implement them as public properties, you can modify with the Property Setting window.
	Property
	Description

	XDisplayedOrigin
	The start index of samples to be displayed

	XDisplayedRange
	The number of samples to be displayed

4.4 How to add a new oscilloscope
Although Oscilloscope::None class is a class that has no measurement logic, it implements all methods to work as an oscilloscope. If you want to extend oscilloscope class, Oscilloscope::None class would be a good starting point.
5. Tracer class
Tracer is a class that controls the flow of experiment. This section describes the process model and points for improving the Tracer class.
5.1 Beginning of experiment
At beginning of experiment, Tracer object proceeds with next steps:
1. Initialize SASEBO.
2. Initialize oscilloscope.
3. Have oscilloscope wait for trigger, and then wait for a trigger from SASEBO.
[image: image6.png]When Start bottun or single
bottun is clicked

click

Tracer

SASEBO

Osciloscope

init

Fig. 6　Beginning of experiment
5.2 Iteration of execution (signal capturing)
Tracer object proceeds with the next steps a specified number of times:
1. Instruct oscilloscope to acquire a waveform.

2. Instruct SASEBO to execute encryption.

3. Retrieve the waveform from the oscilloscope.

After that, validate the encryption result with the software implementation’s result.
[image: image7.png]Tracer SASEBO Oscilloscope
T T T
! ! !
/\ iteration) ! !
acalire
I
exeate T
Dﬁﬂ‘élﬂ

teration number is 1
if single button was clicked.

Fig. 7　iteration of execution
5.3 Completion of experiment
Trace object proceeds with next steps when the experiment is completed:
1. Close the communication with an oscilloscope.

2. Call SASEBO’s Dispose method (to release the resources)

[image: image8.png]Tracer

SASEBO

Osciloscope

T
clobe

Dispose

Fig. 8　completion of experiment
5.4 Progress report and Completion by event handler
One can add methods to Tracer object such that event handler can call those added methods during experiment progression and completion. To do so, use addProgressChangedEventHandler and addCompletedEventHandler methods.

	public void addProgressChangedEventHandler(ProgressChangedEventHandler handler)
Added handlers are invoked when progress is updated.

	public void addCompletedEventHandler(RunWorkerCompletedEventHandler handler)
Added handlers are invoked when experiment has completed.

Actual examples in SASEBO_Acquisition are shown like this:
	task = new Tracer.Tracer(ctrl);

task.addCompletedEventHandler(new RunWorkerCompletedEventHandler(this.taskCompleted));

task.addProgressChangedEventHandler(new ProgressChangedEventHandler(this.taskProgressChanged));

task.addProgressChangedEventHandler(new ProgressChangedEventHandler(this.showWaveData));

task.addProgressChangedEventHandler(new ProgressChangedEventHandler(wavedraw.drawData));

As progress is changed the Tracer object calls taskProgressChanged, showWaveData and drawData methods sequentially. As progress completes Tracer object calls the taskCompleted method. You can add new methods as needed.

6. Control class

Control class is a class that holds an environment and configuration for an experiment as property. This class acts a role that passes configurations to Tracer object. It keeps these values:
	Property
	Description

	int NumOfTraces[get, set]
	The times for the experiment

	byte[] Key [get, set]
	Using key for the experiment

	Mode
	SASEBO operation mode (Encryption or decryption)

	SASEBOParam [get, set]
	Arguments SASEBO required to run.（No need for AES）

	Oscilloscope.Oscilloscope [get, set]
	Using oscilloscope for the experiment

	ISASEBO Sasebo [get, set]
	Using SASEBO for the experiment

	SASEBOCore Core [get, set]
	Using SASEBO cipher core for the experiment

	CipherTool.IBlockCipher Cipher
	Using software implementation for encryption for the experiment. （So far, only block cipher）

	bool Record
	Indicates whether to file or not.

7. Generate plaintext
There are two ways to generate plaintext input; use a random number generation function or specify the plaintext in a text file.

When the radio button of “Setting” -> “Input Plain Text File” is marked, the plaintext is read from the specified text file. If the number of rows in the file is smaller than the number of traces indicated by #Traces and EOF is detected during waveform acquisition, the read point of the plaintext is returned to the first row of the file. For example, if the file has only one row of the 128-bit plaintext data, the same text is repeatedly encrypted. If “Input Plain Text File” is not specified, random numbers are generated for the plaintext inputs.
7.1 CipherTool. PhraseGenerator class
The operations described above are conducted by the CipherTool.PhraseGenerator class. When the “Start” or “Single” button is clicked, the class opens the plaintext file specified by the user or creates a Random object of .NET.
A random number seed used by the Random object is set to ‘1’, and thus the object always generates the same random number sequence. In order to change the seed for each data acquisition process, change the parameter UpdateRandomSeed in the file SASEBO_waveform_acquisition.exe.config under the install directory to ‘True’.
[image: image9.png]Input PlainText File
menu term

Tracer

configf)

PhraseGenerator
class

init) / get()

- config() does configure either use random numbers or read file
«ini() creates new Random instance with fixed seed or opens file
- get{) returns a 16bytes array for cipher.

Fig. 9　PhraseGenerator class

7.2 Program code to generate random text
Program codes to generate random text for the plaintext input are shown below.

PhraseGenerator.init()

	// Create new instance
rand =
 new Random((Properties.Settings.Default.UpdateRandomSeed) ?
 (int)(DateTime.Now.Ticks % int.MaxValue) : 1);

PhraseGenerator.get()

	// Return 16 bytes array
return new byte[] {

 (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256),

 (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256),

 (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256),

 (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256), (byte)rand.Next(256),

};

8. Where data are stored

Output data (include oscilloscope properties and waveforms）are stored in MyDocuments folder(C:\Users\[user]\My Documents\SASEBO_waveform_acquisition). See also DATA_DIR member field in Program.cs.

